U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0 → n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0 → n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X
ISNAT(n__s(V1)) → ISNATKIND(activate(V1))
U111(tt, V1, V2) → ACTIVATE(V2)
U121(tt, V2) → ACTIVATE(V2)
ACTIVATE(n__plus(X1, X2)) → PLUS(X1, X2)
PLUS(N, s(M)) → ISNAT(M)
U411(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, 0) → AND(isNat(N), n__isNatKind(N))
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V1)
PLUS(N, s(M)) → AND(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N)))
ISNATKIND(n__plus(V1, V2)) → AND(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
PLUS(N, s(M)) → ISNAT(N)
U211(tt, V1) → U221(isNat(activate(V1)))
U311(tt, N) → ACTIVATE(N)
U111(tt, V1, V2) → U121(isNat(activate(V1)), activate(V2))
ACTIVATE(n__0) → 01
ISNATKIND(n__s(V1)) → ACTIVATE(V1)
U121(tt, V2) → ISNAT(activate(V2))
ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
ISNAT(n__plus(V1, V2)) → U111(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
ISNAT(n__plus(V1, V2)) → ISNATKIND(activate(V1))
U411(tt, M, N) → ACTIVATE(N)
PLUS(N, 0) → ISNAT(N)
ISNATKIND(n__plus(V1, V2)) → ISNATKIND(activate(V1))
U111(tt, V1, V2) → ISNAT(activate(V1))
U411(tt, M, N) → ACTIVATE(M)
ACTIVATE(n__s(X)) → S(X)
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V2)
AND(tt, X) → ACTIVATE(X)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → ACTIVATE(V1)
U111(tt, V1, V2) → ACTIVATE(V1)
U121(tt, V2) → U131(isNat(activate(V2)))
ACTIVATE(n__and(X1, X2)) → AND(X1, X2)
U211(tt, V1) → ACTIVATE(V1)
U411(tt, M, N) → S(plus(activate(N), activate(M)))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
PLUS(N, s(M)) → U411(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
ACTIVATE(n__isNatKind(X)) → ISNATKIND(X)
U211(tt, V1) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → U211(isNatKind(activate(V1)), activate(V1))
PLUS(N, s(M)) → AND(isNat(M), n__isNatKind(M))
ISNAT(n__plus(V1, V2)) → AND(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
PLUS(N, 0) → U311(and(isNat(N), n__isNatKind(N)), N)
U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0 → n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
ISNAT(n__s(V1)) → ISNATKIND(activate(V1))
U111(tt, V1, V2) → ACTIVATE(V2)
U121(tt, V2) → ACTIVATE(V2)
ACTIVATE(n__plus(X1, X2)) → PLUS(X1, X2)
PLUS(N, s(M)) → ISNAT(M)
U411(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, 0) → AND(isNat(N), n__isNatKind(N))
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V1)
PLUS(N, s(M)) → AND(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N)))
ISNATKIND(n__plus(V1, V2)) → AND(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
PLUS(N, s(M)) → ISNAT(N)
U211(tt, V1) → U221(isNat(activate(V1)))
U311(tt, N) → ACTIVATE(N)
U111(tt, V1, V2) → U121(isNat(activate(V1)), activate(V2))
ACTIVATE(n__0) → 01
ISNATKIND(n__s(V1)) → ACTIVATE(V1)
U121(tt, V2) → ISNAT(activate(V2))
ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
ISNAT(n__plus(V1, V2)) → U111(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
ISNAT(n__plus(V1, V2)) → ISNATKIND(activate(V1))
U411(tt, M, N) → ACTIVATE(N)
PLUS(N, 0) → ISNAT(N)
ISNATKIND(n__plus(V1, V2)) → ISNATKIND(activate(V1))
U111(tt, V1, V2) → ISNAT(activate(V1))
U411(tt, M, N) → ACTIVATE(M)
ACTIVATE(n__s(X)) → S(X)
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V2)
AND(tt, X) → ACTIVATE(X)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → ACTIVATE(V1)
U111(tt, V1, V2) → ACTIVATE(V1)
U121(tt, V2) → U131(isNat(activate(V2)))
ACTIVATE(n__and(X1, X2)) → AND(X1, X2)
U211(tt, V1) → ACTIVATE(V1)
U411(tt, M, N) → S(plus(activate(N), activate(M)))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
PLUS(N, s(M)) → U411(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
ACTIVATE(n__isNatKind(X)) → ISNATKIND(X)
U211(tt, V1) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → U211(isNatKind(activate(V1)), activate(V1))
PLUS(N, s(M)) → AND(isNat(M), n__isNatKind(M))
ISNAT(n__plus(V1, V2)) → AND(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
PLUS(N, 0) → U311(and(isNat(N), n__isNatKind(N)), N)
U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0 → n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
ISNAT(n__s(V1)) → ISNATKIND(activate(V1))
U111(tt, V1, V2) → ACTIVATE(V2)
U121(tt, V2) → ACTIVATE(V2)
ACTIVATE(n__plus(X1, X2)) → PLUS(X1, X2)
PLUS(N, s(M)) → ISNAT(M)
U411(tt, M, N) → PLUS(activate(N), activate(M))
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V1)
PLUS(N, 0) → AND(isNat(N), n__isNatKind(N))
PLUS(N, s(M)) → AND(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N)))
ISNATKIND(n__plus(V1, V2)) → AND(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
PLUS(N, s(M)) → ISNAT(N)
U311(tt, N) → ACTIVATE(N)
U111(tt, V1, V2) → U121(isNat(activate(V1)), activate(V2))
U121(tt, V2) → ISNAT(activate(V2))
ISNATKIND(n__s(V1)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → U111(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
ISNAT(n__plus(V1, V2)) → ISNATKIND(activate(V1))
U411(tt, M, N) → ACTIVATE(N)
PLUS(N, 0) → ISNAT(N)
ISNATKIND(n__plus(V1, V2)) → ISNATKIND(activate(V1))
U111(tt, V1, V2) → ISNAT(activate(V1))
U411(tt, M, N) → ACTIVATE(M)
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
U111(tt, V1, V2) → ACTIVATE(V1)
U211(tt, V1) → ACTIVATE(V1)
ACTIVATE(n__and(X1, X2)) → AND(X1, X2)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
PLUS(N, s(M)) → U411(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
ACTIVATE(n__isNatKind(X)) → ISNATKIND(X)
ISNAT(n__s(V1)) → U211(isNatKind(activate(V1)), activate(V1))
U211(tt, V1) → ISNAT(activate(V1))
PLUS(N, s(M)) → AND(isNat(M), n__isNatKind(M))
ISNAT(n__plus(V1, V2)) → AND(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
PLUS(N, 0) → U311(and(isNat(N), n__isNatKind(N)), N)
U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0 → n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
U111(tt, V1, V2) → ACTIVATE(V2)
U121(tt, V2) → ACTIVATE(V2)
ACTIVATE(n__plus(X1, X2)) → PLUS(X1, X2)
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V1)
ISNATKIND(n__plus(V1, V2)) → AND(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
U121(tt, V2) → ISNAT(activate(V2))
ISNAT(n__plus(V1, V2)) → ISNATKIND(activate(V1))
ISNATKIND(n__plus(V1, V2)) → ISNATKIND(activate(V1))
U111(tt, V1, V2) → ISNAT(activate(V1))
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
U111(tt, V1, V2) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → AND(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
Used ordering: Polynomial interpretation [25]:
ISNAT(n__s(V1)) → ISNATKIND(activate(V1))
PLUS(N, s(M)) → ISNAT(M)
U411(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, 0) → AND(isNat(N), n__isNatKind(N))
PLUS(N, s(M)) → AND(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N)))
PLUS(N, s(M)) → ISNAT(N)
U311(tt, N) → ACTIVATE(N)
U111(tt, V1, V2) → U121(isNat(activate(V1)), activate(V2))
ISNATKIND(n__s(V1)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → U111(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
U411(tt, M, N) → ACTIVATE(N)
PLUS(N, 0) → ISNAT(N)
U411(tt, M, N) → ACTIVATE(M)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
U211(tt, V1) → ACTIVATE(V1)
ACTIVATE(n__and(X1, X2)) → AND(X1, X2)
PLUS(N, s(M)) → U411(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
ACTIVATE(n__isNatKind(X)) → ISNATKIND(X)
ISNAT(n__s(V1)) → U211(isNatKind(activate(V1)), activate(V1))
U211(tt, V1) → ISNAT(activate(V1))
PLUS(N, s(M)) → AND(isNat(M), n__isNatKind(M))
PLUS(N, 0) → U311(and(isNat(N), n__isNatKind(N)), N)
POL(0) = 0
POL(ACTIVATE(x1)) = x1
POL(AND(x1, x2)) = x2
POL(ISNAT(x1)) = x1
POL(ISNATKIND(x1)) = x1
POL(PLUS(x1, x2)) = x1 + x2
POL(U11(x1, x2, x3)) = 0
POL(U111(x1, x2, x3)) = 1 + x2 + x3
POL(U12(x1, x2)) = 0
POL(U121(x1, x2)) = 1 + x2
POL(U13(x1)) = 0
POL(U21(x1, x2)) = 0
POL(U211(x1, x2)) = x2
POL(U22(x1)) = 0
POL(U31(x1, x2)) = 1 + x2
POL(U311(x1, x2)) = x2
POL(U41(x1, x2, x3)) = 1 + x2 + x3
POL(U411(x1, x2, x3)) = x2 + x3
POL(activate(x1)) = x1
POL(and(x1, x2)) = x2
POL(isNat(x1)) = 0
POL(isNatKind(x1)) = x1
POL(n__0) = 0
POL(n__and(x1, x2)) = x2
POL(n__isNatKind(x1)) = x1
POL(n__plus(x1, x2)) = 1 + x1 + x2
POL(n__s(x1)) = x1
POL(plus(x1, x2)) = 1 + x1 + x2
POL(s(x1)) = x1
POL(tt) = 0
U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U13(tt) → tt
U12(tt, V2) → U13(isNat(activate(V2)))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
U22(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U41(tt, M, N) → s(plus(activate(N), activate(M)))
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0 → n__0
isNatKind(n__0) → tt
activate(X) → X
activate(n__s(X)) → s(X)
activate(n__0) → 0
isNatKind(n__s(V1)) → isNatKind(activate(V1))
and(tt, X) → activate(X)
U31(tt, N) → activate(N)
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
ISNAT(n__s(V1)) → ISNATKIND(activate(V1))
U411(tt, M, N) → ACTIVATE(M)
PLUS(N, s(M)) → ISNAT(M)
U411(tt, M, N) → PLUS(activate(N), activate(M))
AND(tt, X) → ACTIVATE(X)
ISNAT(n__s(V1)) → ACTIVATE(V1)
PLUS(N, 0) → AND(isNat(N), n__isNatKind(N))
PLUS(N, s(M)) → AND(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N)))
PLUS(N, s(M)) → ISNAT(N)
ACTIVATE(n__and(X1, X2)) → AND(X1, X2)
U211(tt, V1) → ACTIVATE(V1)
U311(tt, N) → ACTIVATE(N)
U111(tt, V1, V2) → U121(isNat(activate(V1)), activate(V2))
PLUS(N, s(M)) → U411(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
ACTIVATE(n__isNatKind(X)) → ISNATKIND(X)
ISNATKIND(n__s(V1)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → U111(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
U211(tt, V1) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → U211(isNatKind(activate(V1)), activate(V1))
U411(tt, M, N) → ACTIVATE(N)
PLUS(N, s(M)) → AND(isNat(M), n__isNatKind(M))
PLUS(N, 0) → ISNAT(N)
PLUS(N, 0) → U311(and(isNat(N), n__isNatKind(N)), N)
U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0 → n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
ISNATKIND(n__s(V1)) → ACTIVATE(V1)
ACTIVATE(n__isNatKind(X)) → ISNATKIND(X)
ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → AND(X1, X2)
U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0 → n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVATE(n__isNatKind(X)) → ISNATKIND(X)
Used ordering: Polynomial interpretation with max and min functions [25]:
ISNATKIND(n__s(V1)) → ACTIVATE(V1)
ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → AND(X1, X2)
POL(0) = 0
POL(ACTIVATE(x1)) = x1
POL(AND(x1, x2)) = x2
POL(ISNATKIND(x1)) = x1
POL(U11(x1, x2, x3)) = x2 + x3
POL(U12(x1, x2)) = 0
POL(U13(x1)) = 0
POL(U21(x1, x2)) = 1
POL(U22(x1)) = 0
POL(U31(x1, x2)) = x2
POL(U41(x1, x2, x3)) = x2 + x3
POL(activate(x1)) = x1
POL(and(x1, x2)) = x2
POL(isNat(x1)) = 1 + x1
POL(isNatKind(x1)) = 1 + x1
POL(n__0) = 0
POL(n__and(x1, x2)) = x2
POL(n__isNatKind(x1)) = 1 + x1
POL(n__plus(x1, x2)) = x1 + x2
POL(n__s(x1)) = x1
POL(plus(x1, x2)) = x1 + x2
POL(s(x1)) = x1
POL(tt) = 0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0 → n__0
isNatKind(n__0) → tt
activate(X) → X
activate(n__s(X)) → s(X)
activate(n__0) → 0
isNatKind(n__s(V1)) → isNatKind(activate(V1))
and(tt, X) → activate(X)
U31(tt, N) → activate(N)
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U13(tt) → tt
U12(tt, V2) → U13(isNat(activate(V2)))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
U22(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U41(tt, M, N) → s(plus(activate(N), activate(M)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDP
ISNATKIND(n__s(V1)) → ACTIVATE(V1)
ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → AND(X1, X2)
U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0 → n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → AND(X1, X2)
U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0 → n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → AND(X1, X2)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0 → n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
POL(0) = 1
POL(ISNATKIND(x1)) = x1
POL(U11(x1, x2, x3)) = 0
POL(U12(x1, x2)) = 0
POL(U13(x1)) = 0
POL(U21(x1, x2)) = 0
POL(U22(x1)) = 0
POL(U31(x1, x2)) = 1 + x2
POL(U41(x1, x2, x3)) = 1 + x2 + x3
POL(activate(x1)) = x1
POL(and(x1, x2)) = x2
POL(isNat(x1)) = 0
POL(isNatKind(x1)) = x1
POL(n__0) = 1
POL(n__and(x1, x2)) = x2
POL(n__isNatKind(x1)) = x1
POL(n__plus(x1, x2)) = x1 + x2
POL(n__s(x1)) = 1 + x1
POL(plus(x1, x2)) = x1 + x2
POL(s(x1)) = 1 + x1
POL(tt) = 0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0 → n__0
isNatKind(n__0) → tt
activate(X) → X
activate(n__s(X)) → s(X)
activate(n__0) → 0
isNatKind(n__s(V1)) → isNatKind(activate(V1))
and(tt, X) → activate(X)
U31(tt, N) → activate(N)
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U13(tt) → tt
U12(tt, V2) → U13(isNat(activate(V2)))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
U22(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U41(tt, M, N) → s(plus(activate(N), activate(M)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0 → n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
U211(tt, V1) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → U211(isNatKind(activate(V1)), activate(V1))
U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0 → n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
U211(tt, V1) → ISNAT(activate(V1))
Used ordering: Polynomial interpretation with max and min functions [25]:
ISNAT(n__s(V1)) → U211(isNatKind(activate(V1)), activate(V1))
POL(0) = 1
POL(ISNAT(x1)) = x1
POL(U11(x1, x2, x3)) = 0
POL(U12(x1, x2)) = 0
POL(U13(x1)) = 0
POL(U21(x1, x2)) = 0
POL(U211(x1, x2)) = 1 + x2
POL(U22(x1)) = 0
POL(U31(x1, x2)) = 1 + x2
POL(U41(x1, x2, x3)) = 1 + x2 + x3
POL(activate(x1)) = x1
POL(and(x1, x2)) = x2
POL(isNat(x1)) = 0
POL(isNatKind(x1)) = 0
POL(n__0) = 1
POL(n__and(x1, x2)) = x2
POL(n__isNatKind(x1)) = 0
POL(n__plus(x1, x2)) = x1 + x2
POL(n__s(x1)) = 1 + x1
POL(plus(x1, x2)) = x1 + x2
POL(s(x1)) = 1 + x1
POL(tt) = 0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0 → n__0
isNatKind(n__0) → tt
activate(X) → X
activate(n__s(X)) → s(X)
activate(n__0) → 0
isNatKind(n__s(V1)) → isNatKind(activate(V1))
and(tt, X) → activate(X)
U31(tt, N) → activate(N)
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U13(tt) → tt
U12(tt, V2) → U13(isNat(activate(V2)))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
U22(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U41(tt, M, N) → s(plus(activate(N), activate(M)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
ISNAT(n__s(V1)) → U211(isNatKind(activate(V1)), activate(V1))
U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0 → n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
PLUS(N, s(M)) → U411(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
U411(tt, M, N) → PLUS(activate(N), activate(M))
U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0 → n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PLUS(N, s(M)) → U411(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
Used ordering: Polynomial interpretation [25]:
U411(tt, M, N) → PLUS(activate(N), activate(M))
POL(0) = 1
POL(PLUS(x1, x2)) = x2
POL(U11(x1, x2, x3)) = 0
POL(U12(x1, x2)) = 0
POL(U13(x1)) = 0
POL(U21(x1, x2)) = 0
POL(U22(x1)) = 0
POL(U31(x1, x2)) = x2
POL(U41(x1, x2, x3)) = 1 + x2 + x3
POL(U411(x1, x2, x3)) = x2
POL(activate(x1)) = x1
POL(and(x1, x2)) = x2
POL(isNat(x1)) = 0
POL(isNatKind(x1)) = 0
POL(n__0) = 1
POL(n__and(x1, x2)) = x2
POL(n__isNatKind(x1)) = 0
POL(n__plus(x1, x2)) = x1 + x2
POL(n__s(x1)) = 1 + x1
POL(plus(x1, x2)) = x1 + x2
POL(s(x1)) = 1 + x1
POL(tt) = 0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0 → n__0
isNatKind(n__0) → tt
activate(X) → X
activate(n__s(X)) → s(X)
activate(n__0) → 0
isNatKind(n__s(V1)) → isNatKind(activate(V1))
and(tt, X) → activate(X)
U31(tt, N) → activate(N)
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U13(tt) → tt
U12(tt, V2) → U13(isNat(activate(V2)))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
U22(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U41(tt, M, N) → s(plus(activate(N), activate(M)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
U411(tt, M, N) → PLUS(activate(N), activate(M))
U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0 → n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X